
Week 4 - Wednesday

 What did we talk about last time?
 Topological sort
 Greedy algorithms
 Interval scheduling

 Two friends who live 36 miles apart decide to meet and start
riding their bikes towards each other.
 They plan to meet halfway.
 Each is riding at 6mph.
 One of them has a pet carrier pigeon who starts flying the instant the

friends start traveling.
 The pigeon flies back and forth at 18mph between the friends until

the friends meet.
 How many miles does the pigeon travel?

 What if all intervals need to be scheduled?
 Example: Lectures are intervals and resources are classrooms
 Example: Roasting pigs are intervals and resources are fire pits

 The problem is to find the minimum number of resources
needed to satisfy all intervals

 The book calls this problem interval partitioning

 Intervals to schedule (arranged unhelpfully):

 Intervals to schedule (arranged helpfully):

 The depth d of a set of intervals is the maximum number that pass
a single point on the time-line

 Sort intervals by their start times
 Let I1, I2, …, In be the ordered intervals
 For j = 1, 2, 3, ..., n
 For each interval Ii that precedes Ij in sorted order and overlaps it
▪ Exclude the label of Ii from consideration for Ij

 If there is any label from {1, 2, …, d} that has not been excluded
▪ Assign that label to Ij

 Else
▪ Leave Ij unlabeled

 Claim: In our algorithm, every interval will be assigned a label,
and no two overlapping intervals will receive the same label.

 Proof: Consider interval Ij, and suppose there are t intervals
earlier in the sorted order that overlap it. These t intervals
with Ij form t + 1 intervals that pass over a common point on
the time-line. Thus, t + 1 ≤ d and t ≤ d – 1. Thus, there must be
at least one label left to be assigned to Ij.

 To show that no two overlapping intervals are assigned the
same label, consider two intervals I and I' that overlap.
Suppose that I precedes I' in the sorted order. When I' is
considered by the algorithm, I is in the set of intervals whose
labels are excluded. ∎

 Consider a problem with requests that are not fixed in time
 Instead, each request i has a deadline di and requires time ti

using the resources
 If the finish time f(i) > di, its lateness li = f(i) – di
 If the finish time f(i) ≤ di, its lateness li = 0
 One goal we could have is to minimize the maximum lateness

of any given job
 We don't care about the sum of the lateness, just the single job that

is the most overdue

 Job 1:

 Job 2:

 Job 3:

 Solution:
 Lateness = 0

Deadline = 2

Deadline = 4

Deadline = 6

 Which request do we schedule next?
 Shortest jobs first?
 No, we could have short jobs with late deadlines

 Jobs with the least slack time (di – ti)
 No, consider Job 1 with t1 = 1 and d1 = 2 and Job 2 with t2 = 10 and d2

= 10
 Sort by order of increasing deadlines?
 Surprisingly, yes! Length of job doesn't matter

 Sort the jobs in increasing order of deadlines
 For simplicity, relabel jobs and deadlines so that d1 ≤ d2 ≤ … dn
 Set f = s
 For i = 1, 2, …, n
 Assign job i to the interval from s(i) = f to f(i) = f + ti

 Set f = f + ti

 Idle time is time when no jobs are scheduled but there are still
jobs left (gaps)

 There is an optimal schedule with no idle time
 We will use an exchange argument to transform the optimal

schedule O into the schedule A we produce
 We say that a schedule has an inversion if a job i with deadline

di is scheduled before a job j with an earlier deadline dj < di

 Our algorithm produces a schedule with no inversions

 Proof:
 If two different schedules have neither inversions nor idle time, they

might not produce the same order of jobs, but they can only differ in
the order in which jobs with identical deadlines are scheduled.
 Consider such a deadline d. In both schedules, the jobs with deadline

d are all scheduled consecutively (after all jobs with earlier deadlines
and before all jobs with later deadlines). Among the jobs with
deadline d, the last one has the greatest lateness, and this lateness
does not depend on the order of the jobs. ∎

 Proof:
 We know there is an optimal schedule O with no idle time.
 If O has an inversion, then there is a pair of jobs i and j such that j is

scheduled right after i and has dj < di.
 If there were no inversions, all of the deadlines would be in order, but

the fact that there is an inversion means that some point will be
reached where a job has an earlier deadline than the job before it.
Let that job be i and the previous job be j.
 If we swap i and j, we get a schedule with one fewer inversion.

Job i Job j

Original schedule O (before swapping)

Schedule O' (after swapping)

Nothing other than i and j are affected

Job iJob j

 This new swapped schedule has a maximum lateness no larger than that
of O.

 Why?
 Since there are no gaps, the only things affected are jobs i and j. (Nothing

before or after changes.)
 Job j is finishing earlier, so its lateness will not increase.
 We will use a prime (') to differentiate quantities in the swapped schedule.
 Now, f'(i) = f(j) and remember that di > dj
 li' = f(j) – di < f(j) – dj = lj
 The old maximum lateness L ≥ lj > li'
 Thus, the new maximum lateness L' will not be greater
∎

 Claim:
 The schedule A produced by the greedy algorithm has optimal

maximum lateness.
 Proof:
 The previous proof shows that we can construct a schedule without

inversions as good as any optimal one with inversions.
 The proof before that says that all schedules with no inversions and

no idle time have the same maximum lateness.
 Since our algorithm finds a schedule without inversions and no idle

time, it must be optimal. ∎

 Directed graph G = (V, E) with start node s
 Assume that there is a path from s to every other node

(although that's not critical)
 Every edge e has a length le ≥ 0
 For a path P, length of P l(P) is the sum of the lengths of the

edges on P
 We want to find the shortest path from s to every other node

in the graph
 An undirected graph is an easy tweak

 Let's first look at the length of the paths, not the actual paths
 We keep set S of vertices to which we have determined the

true shortest-path distance
 S is the explored part of the graph

 Then, we try to find the shortest new path by traveling from
any node in the explored part S to any node v outside

 We update the distance to v and add v to S
 Then, continue

 Let S be the set of explored nodes
 For each u ∈ S, we store a distance d(u)

 Initially S = {s} and d(s) = 0
 While S ≠ V
 Select a node v ∉ S with at least one edge from S for which d'(v) =

mine=(u,v):u∈S d(u) + le is as small as possible
 Add v to S and define d(v) = d'(v)

A

B

G

E

F

C

D

8

I
H

J
4

2

13

3

4

2

1

3

7

4
17

3

9

2

6

3

 Claim: For each u ∈ S, the path Pu is a shortest s-u path
 Proof by induction on the size of S:
 Basis case: (n = 1)
 |S| = 1 means S = {s} and d(s) = 0
 Clearly, that's the best distance to s
 Induction step: (n = k)
 Assume that when |S| = k for k ≥ 1, S contains the shortest paths for

everything in S

 Suppose we are increasing S to size k + 1 by adding node v.
Let (u, v) be the final edge on our s-v path Pv.

 By the induction hypothesis, Pu is the shortest s-u path for all
u ∈ S.

 Consider any other s-v path P. Since v is not in S, P must
leave S somewhere. Let y be the first node on P that is not in
S, and let x ∈ S be the node just before y.

 On step k + 1, we could have added y, but we didn't. Thus,
there is no path from s to y through x that is shorter than Pv.

 But the subpath of P up to y is such a path, so that subpath
must be at least as long as Pv. Since edge lengths are
nonnegative, P is at least as long as Pv.

 Thus, Pv must be the shortest path to v. ∎

 You can think of Breadth-First Search as a pulse expanding, layer
by layer, through a graph from some starting node

 Dijkstra's algorithm is the same, except that the time it takes for
the pulse to arrive is based not on the number of edges, but the
lengths of the edges it has to pass through

 Because Dijkstra's algorithm expands from the starting point to
whatever is closer, it grows like a blob

 There are algorithms that, under certain situations, can cleverly
grow in the direction of the destination and will often take less
time to find the path there

 For n nodes, the While loop runs n – 1 times
 In the worst case, we might need to look at all the edges to

compute appropriate minima for each iteration
 Yielding a running time of O(mn)

 It turns out that using a priority queue allows us to get the time
down to O(m log n)
 Some deep data structure work has been done here, and I don't want to

go into it
 Read the literature if you want to implement the algorithm as fast as

possible

 Finish Dijkstra's
 Minimum spanning trees
 Review

 Finish Assignment 2
 Due Friday before midnight

 Review chapters 1 through 3
 Exam 1 is next Monday
 All office hours are canceled today

	COMP 4500
	Last time
	Questions?
	Logical warmup
	Scheduling all intervals
	Interval partitioning: visualization
	Interval partitioning algorithm
	Interval partitioning correctness
	Proof continued
	Scheduling to minimize lateness
	Scheduling example
	Designing the algorithm
	Minimizing lateness algorithm
	Observations
	All schedules with no inversions and no idle time have the same maximum lateness
	There is an optimal schedule with no inversions and no idle time
	Illustration of jobs i and j
	Proof continued
	Our greedy algorithm is optimal
	Three-Sentence Summary of Shortest Paths and Minimum Spanning Tree
	Shortest Paths
	Shortest path set up
	Designing the algorithm
	Dijkstra's algorithm
	Dijkstra's algorithm example
	Consider S at any point during the algorithm
	Proof continued
	Proof continued
	Reflections on Dijkstra's algorithm
	Running time for Dijkstra's algorithm
	Quiz
	Upcoming
	Next time…
	Reminders

